Complexity bounds for zero-test algorithms

نویسندگان

  • Joris van der Hoeven
  • John Shackell
چکیده

In this paper, we analyze the complexity of a zero test for expressions built from formal power series solutions of first order differential equations with non degenerate initial conditions. We will prove a doubly exponential complexity bound. This bound establishes a power series analogue for “witness conjectures”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Interpolation: A Framework for Tight Exponential-Time Counting Complexity

We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis #ETH introduced by Dell et al. (ACM Transactions on Algorithms, 2014). Our framework allows us to convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus ruling out algorithms with running time 2o(n) on graphs with n vertices and O(n) edges. As exempla...

متن کامل

On the Power of Discontinous Approximate Computations

The set of operations S 1 = f+; ?; ; =; >g is used in algebraic computations to avoid degeneracies (e.g., division by zero), but is also used in numerical computations to avoid huge roundoo errors (e.g., division by a small quantity). On the other hand, the classes of algorithms using operations from the set S 2 = f+; ?; ; =g or from the set S 3 = f+; ?; g are the most studied in complexity the...

متن کامل

Bounds for Small-Error and Zero-Error Quantum Algorithms

We present a number of results related to quantum algorithms with small error probability and quantum algorithms that are zero-error. First, we give a tight analysis of the trade-offs between the number of queries of quantum search algorithms, their error probability, the size of the search space, and the number of solutions in this space. Using this, we deduce new lower and upper bounds for qu...

متن کامل

Differentially Private Testing of Identity and Closeness of Discrete Distributions

We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problem...

متن کامل

Zero Aliasing for Modeled Faults

When using Built-In Self Test (BIST) for testing VLSI circuits the circuit response to an input test sequence, which may consist of thousands to millions of bits, is compacted into a signature which consists of only tens of bits. Usually a linear feedback shift register (LFSR) is used for response compaction via polynomial division. The compacting function is a many-to-one function and as a res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2006